Cell Walls and the Developmental Anatomy of the Brachypodium distachyon Stem Internode
نویسندگان
چکیده
While many aspects of plant cell wall polymer structure are known, their spatial and temporal distribution within the stem are not well understood. Here, we studied vascular system and fiber development, which has implication for both biofuel feedstock conversion efficiency and crop yield. The subject of this study, Brachypodium distachyon, has emerged as a grass model for food and energy crop research. Here, we conducted our investigation using B. distachyon by applying various histological approaches and Fourier transform infrared spectroscopy to the stem internode from three key developmental stages. While vascular bundle size and number did not change over time, the size of the interfascicular region increased dramatically, as did cell wall thickness. We also describe internal stem internode anatomy and demonstrate that lignin deposition continues after crystalline cellulose and xylan accumulation ceases. The vascular bundle anatomy of B. distachyon appears to be highly similar to domesticated grasses. While the arrangement of bundles within the stem is highly variable across grasses, B. distachyon appears to be a suitable model for the rind of large C4 grass crops. A better understanding of growth and various anatomical and cell wall features of B. distachyon will further our understanding of plant biomass accumulation processes.
منابع مشابه
Cell wall composition throughout development for the model grass Brachypodium distachyon
Temperate perennial grasses are important worldwide as a livestock nutritive energy source and a potential feedstock for lignocellulosic biofuel production. The annual temperate grass Brachypodium distachyon has been championed as a useful model system to facilitate biological research in agriculturally important temperate forage grasses based on phylogenetic relationships. To physically corrob...
متن کاملUnderstanding the Remodelling of Cell Walls during Brachypodium distachyon Grain Development through a Sub-Cellular Quantitative Proteomic Approach
Brachypodiumdistachyon is a suitable plant model for studying temperate cereal crops, such as wheat, barley or rice, and helpful in the study of the grain cell wall. Indeed, the most abundant hemicelluloses that are in the B. distachyon cell wall of grain are (1-3)(1-4)-β-glucans and arabinoxylans, in a ratio similar to those of cereals such as barley or oat. Conversely, these cell walls contai...
متن کاملImaging with the fluorogenic dye Basic Fuchsin reveals subcellular patterning and ecotype variation of lignification in Brachypodium distachyon
Lignin is a complex polyphenolic heteropolymer that is abundant in the secondary cell walls of plants and functions in growth and defence. It is also a major barrier to the deconstruction of plant biomass for bioenergy production, but the spatiotemporal details of how lignin is deposited in actively lignifying tissues and the precise relationships between wall lignification in different cell ty...
متن کاملBrachypodium distachyon grain: characterization of endosperm cell walls.
The wild grass Brachypodium distachyon has been proposed as an alternative model species for temperate cereals. The present paper reports on the characterization of B. distachyon grain, placing emphasis on endosperm cell walls. Brachypodium distachyon is notable for its high cell wall polysaccharide content that accounts for ∼52% (w/w) of the endosperm in comparison with 2-7% (w/w) in other cer...
متن کاملOrgan and Tissue-Specific Localisation of Selected Cell Wall Epitopes in the Zygotic Embryo of Brachypodium distachyon
The plant cell wall shows a great diversity regarding its chemical composition, which may vary significantly even during different developmental stages. In this study, we analysed the distribution of several cell wall epitopes in embryos of Brachypodium distachyon (Brachypodium). We also described the variations in the nucleus shape and the number of nucleoli that occurred in some embryo cells....
متن کامل